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Collective behaviour can be difficult to discern because it is not limited to
animal aggregations such as flocks of birds and schools of fish wherein indi-
viduals spontaneously move in the same way despite the absence of
leadership. Insect swarms are, for example, a form of collective behaviour,
albeit one lacking the global order seen in bird flocks and fish schools.
Their collective behaviour is evident in their emergent macroscopic proper-
ties. These properties are predicted by close relatives of Okubo’s 1986 [Adv.
Biophys. 22, 1–94. (doi:10.1016/0065-227X(86)90003-1)] stochastic model.
Here, we argue that Okubo’s stochastic model also encapsulates the cohe-
siveness mechanism at play in bird flocks, namely the fact that birds
within a flock behave on average as if they are trapped in an elastic potential
well. That is, each bird effectively behaves as if it is bound to the flock by a
force that on average increases linearly as the distance from the flock centre
increases. We uncover this key, but until now overlooked, feature of flocking
in empirical data. This gives us a means of identifying what makes a given
system collective. We show how the model can be extended to account for
intrinsic velocity correlations and differentiated social relationships.
1. Introduction
Collective motion attracts intense research interest from physicists, engineers and
biologists working on systems from cellular interactions to animal swarms,
schools, flocks, herds and human crowds [1,2]. It is therefore rather surprising
that we lack a clear, operational definition of what collective behaviour is [3,4].
Typically, we think of collective behaviour as the result of self-organization,
whereby simple patterns of interaction between agents lead to the emergence
of group-level properties, but these properties are not always clear cut. For
instance, bird flocks show collective order with individuals appearing to move
together as one [5–11], but swarming midges do not [12]. Similarly, it can be dif-
ficult to disentangle truly collective motion from cases where individuals simply
happen to be moving independently in the same direction, such as towards a
valuable resource. Research has identified several principles that may generate
collective motion, such as correlations of individual behaviour [13] and positive
feedback loops and nonlinear relationships between individual and group behav-
iour [14]. However, these principles do not necessarily allow us to specify generic
features of collective motion across diverse systems or identify where it occurs.

By drawing an analogy with Newtonian gravitational attraction, Okubo [12]
speculated that the interactions between swarming insects produce, on the average,
a centrally attractive force that acts on every individual. There is now strong exper-
imental support for such a resultant restoring force in laboratory swarms of
Chironomus ripariusmidges [15]. This force increases linearlywith increasingdistance
from the swarm centre, i.e. the insects are behaving on the average as if they are
trapped in an elastic potential well and so are analogous to a self-gravitating
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system [12,15]. Okubo [12] incorporated this resultant force into a
one-dimensional stochastic model. This model and later three-
dimensional elaborations [16–21] are in close agreement with a
plethora of data from laboratory studies [15,22–25]. Bird flocks
may also be analogous to self-gravitating systems as birds may
tend to gravitate towards some coarse-grained features of the
flock based on the projected view of each individual out through
the flock [26]. That is, an individual’s visual input is coarse
grained to a pattern of [dark] birds against a [light] sky. Visual
inputs can also be expected to display fold-change detection
which is ubiquitous in nature [27]. Solid angles, like Newtonian
gravity, decrease with distance according to an inverse-square
power law. Such gravitational-like interactions together with
adaptation due to fold-change underpins Okubo’s [12] model
[16]. This suggests that Okubo’s [12] model could be adapted
to simulate flocking birds. We show that this is indeed the case,
uncovering strong empirical evidence that flocking birds like
swarming insects behave on average as if they are trapped in a
potential well of their own making. In contrast with laboratory
insect swarms, bird flockspossessglobal order (individualmove-
ments are correlated [5]) and interactions between birds can be
influenced by social relationships—jackdaws form lifelongmon-
ogamous pair-bonds and partners remain in close proximity to
one another within flocks in flight [8,28]. Existing models
cannot account for this—they assume identical, interchangeable
agents. Here followingReynolds [18], we showhowvelocity cor-
relations and differentiated social relationships can be
incorporated into Okubo’s [12] model. These new stochastic
models are shown to replicate key characteristics of flocks of star-
lings and jackdaws [8–10,29].
2. Model formulation
Following Okubo [12], we assume that the positions, xi, and
velocities, ui, of individual birds can be described by the
stochastic differential equations

dui ¼ai(u,x,t) dtþ bij(u,x,t) dWj(t)
and dxi ¼ui dt,

)
ð2:1Þ

where the subscripts denote individuals (with implied sum-
mation over repeated indices) and where dW(t) is an
incremental Wiener process with correlation property
dWiðtÞdWjðtþ t0Þ ¼ dðt0Þdijdt: The function a(u,x,t) is deter-
mined by the requirement that the statistical properties of
the simulated positions and velocities be consistent with the
observed or assumed form of the joint distribution of velocity
and position, Pðu,x,tÞ. Mathematically, this requires that
Pðu,x,tÞ be a solution of the Fokker–Planck equation

@P
@t

þ ui
@P
@xi

¼ � @

@ui
(aiP)þ b2

2
@2P
@u2i

, ð2:2Þ

when the magnitude of the driving noise, b(u,x,t), is taken to
be a constant [30]. For statistically stationary flocks having
@P=@t ¼ 0,

aiP ¼ b2

2
@P
@ui

þ fi(x,u,t), ð2:3Þ

where,

@fi

@ui
¼ �ui

@P
@xi

: ð2:4Þ
The functional form of Pðu,x,tÞ is not known but the least
biased (maximum entropy) form consistent with, spatial
location (cohesiveness); alignment; pair-bonding; and a
characteristic speed, is a multivariant Gaussian

Pðu,x,tÞ ¼ 1

ð2pÞNðDetlDettÞ1=2
exp � 1

2
(xi � �x)

� �
t�1
ij (xj � �x)

exp � 1
2
(ui � �u)t�1

ij (uj � �u)
� �

, ð2:5Þ

where �x is the centre of mass of the flock, �u ¼ d�x=dt,
lij ¼ xixj

� �
which is non-zero for paired birds (that tend to

remain close together) and zero for unpaired birds and
where tij ¼ uiuj

� �
. A multivariant Gaussian is attained

when Shannon’s entropy is maximized subject to the con-
straints imposed by knowing only the first and second
moments of the distribution. One of the simplest one-dimen-
sional stochastic models corresponding to equation (2.5) is,
from (equations (2.1–2.4)), given by

dui ¼� b2

2
t�1
ij (uj � �u)dt� tijl

�1
jk (xk � �x) dt

þ 1
2
@tij

@xj
dtþ 1

2
t�1
lj

@til
@xk

ujuk dtþ bdWi(t)

and dxi ¼ui dt:

9>>>>>>=
>>>>>>;

ð2:6Þ

Details of the derivation of such models can be found in
Rodean [31].

— The first term describes how an individual’s velocity
relaxes to a weighted sum of the velocities of its
neighbours.

— The second term describes an individuals’ effective attrac-
tion to the centre of the flock (due to visual interactions
that are not modelled explicitly, see Introduction) and to
the other birds in the flock. As argued in the [26] Intro-
duction, such confinement within a harmonic potential
is expected if flocking birds interact visually in the way
uncovered by Pearce et al. [26]. We do not model these
visual interactions explicitly. Instead, their net effort is
subsumed into an effective (linear) restoring force term.
This is exactly analogous to the case of swarming
midges which interact acoustically; these interactions
are not modelled explicitly, instead their net effect is sub-
sumed into an effective (linear) restoring force term
[12,16,17,19,32]. In both cases, the harmonic potential is
an emergent property of the collective behaviours.

It is most readily understood for the case of a flock of non-a-
ligning birds containing a single pair of individuals
(individuals 1 and 2) that remain in close proximity, so that

l ¼ s2
x

1 c 0
c 1 0

0 0 . .
.

2
64

3
75 and t ¼ s2

u

1 0 0
0 1 0

0 0 . .
.

2
64

3
75.
Denoting with A1 the predicted mean acceleration
of bird 1, from (2.6) we get the following expression
A1 ¼ �s2

u=s
2
x[1=1þ c(x1 � �x)þ c=1� c2ðx1 � x2Þ]. Bird 1 is

therefore attracted to the flock centre and, in accordance
with observations [9], also exhibits a spring-like response
(rather than an apparent spring-like response due to the per-
vasiveness of the central attraction, electronic supplementary
material) to its partner, with acceleration increasing linearly
with distance. As observed [8], this model therefore predicts
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Figure 1. Predicted characteristics of a flock with (a) three unpaired birds and (b) two paired birds. Example trajectories showing that unpaired birds exchange
neighbours slowly whereas paired birds maintain an almost fixed distance to the partners. Predictions were obtained using the stochastic model, equation (2.6),
with �x ¼ 0 and xixj

� � ¼ 0 for the unpaired and arbitrary units, a.u] for the paired birds. All other model parameters were set to unity [a.u.]. Velocity correlations
are absent.
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that unpaired birds exchange neighbours slowly whereas
paired birds maintain an almost fixed distance to their part-
ners (figure 1). If pervasive, such position-dependent
attraction forces can result in milling-like patterns and other
kinds of large-scale patterns [33]. Nonetheless, the pairing
does not change the net binding of bird 1 to the flock
centre, as averaging over x2 gives A1h i ¼ �s2

u=s
2
x(x1 � �x).

Without such central attraction individuals would undergo
Richardson-like relative diffusion [34], and consequently
simulated flocks would eventually dissolve. Nonetheless,
central attraction in bird flocks has not been reported on
the literature. It is, however, present in the self-propelled par-
ticle model of Ling et al. [10] (a modified Viscek [35] model)
but only as an ad hoc way to confine the flocks without the
need for periodic boundary conditions.

Similarly, if l ¼ s2
x

1 0 0
0 1 0

0 0 . .
.

2
64

3
75 and t ¼ s2

u

1 c 0
c 1 0

0 0 . .
.

2
64

3
75

then
A1 ¼ �s2
u

s2
x
[(1þ c)(x1 � �x)� cðx1 � x2Þ]:

Note also that non-Gaussian density profiles will result in
nonlinear effective force terms.

— The third and fourth terms in the stochastic model,
equation (2.6), ensure that simulatedvelocities have the pre-
scribed velocity correlations and are effectively a ‘social
force’ that contributes to velocity changes. These terms
ensure that the spatial distribution of individuals is Gaus-
sian on average. Without these terms, individuals would
tend to drift apart because relative velocities tend to
decrease as individuals come together and increase as
they move apart, leading to a net outward drift, a process
akin to turbophoresis. The third and fourth terms counter
this drift which on average is given by �@tij=@xj. Turbo-
phoresis could be problematic in other models that
incorporate seemingly physically plausible but ad hoc inter-
action terms imposing, for example, alignment of
neighbouring birds or repulsion between closely neigh-
bouring birds. In this regard, it is worth noting that the
third term induces short-range ‘repulsive’ interactions
when velocity correlations are positive [36]. The third and
fourth terms vanish when birds interact with a fixed
number of neighbours, rather than with all neighbours
with a fixed metric distance. Such topological interactions
(nth nearest neighbour interactions irrespective of their dis-
tance) arise in jackdaw flocks when travelling to roosts and
in starling murmurations [5,10,37]. Metric (scale finite)
interactions are evident in jackdaw flocks during anti-pred-
ator mobbing events [10]. Because of the functional form of
the third and fourth terms, velocity correlations strengthen
the long-range central attraction, as first noted by Reynolds
[18] (figure 2a). However, when a pair of simulated birds
are much closer than the correlation length scale the accel-
eration between them becomes strongly repelling
(figure 2b). Short-range repulsion is therefore a model pre-
diction rather than a model ingredient. Moreover, in
accordancewith observations [8], pairing causes variations
in the local interactions (figure 2b). As observed, for paired
birds, the long-range attraction is much stronger, and the
repulsion is shorter ranged.

— The fifth term in the stochastic model, equation (2.6), the
noise term, represents fluctuations in the resultant internal
force that arise partly because of the limited number of
individuals in the grouping and partly because of the
non-uniformity in their spatial distribution.

When the second (attraction) term vanishes, the three-dimen-
sional form of equation (2.6) is identical to the stochastic
model of Sawford et al. [38] for the dispersal of multiple
tracer particles in high Reynolds number turbulence—a
model that provides a good representation of shape statistics
for clusters of particles. When spatial and velocity corre-
lations are absent, i.e. when lij ¼ s2

xdij and tij ¼ s2
udij,

equation (2.6) reduces to Okubo’s [12] model for the
trajectories of swarming insects

dui ¼� b2

2
ui dt� s2

u

s2
x
xi dtþ bdWiðtÞ

and dxi ¼ui dt,

9>=
>; ð2:7Þ
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Figure 2. Predicted influence of velocity correlations. (a) In the core of the flock, jxj , 1=2, the central attraction is strengthened (albeit only slightly as evidenced
by the slight kink). (b) Correlations induce short-range repulsive interactions and long-range attractive interactions between nearest neighbours, i.e. neighbouring
individuals accelerate away from one another when close together and accelerate towards one another when far apart (black line). They also induce long-range
attractive interactions between more distant neighbours (data not shown). In accordance with observations [8], pairing causes variations in the local interactions. For
paired birds, the long-range attraction is much stronger, and repulsion is shorter ranged (red line). Predictions for flocks without discrete pairs were obtained using
the stochastic model, equation (2.6), with �x ¼ 0, N = 10 and with all other model parameters set to unity [a.u.]. Paired birds have xixj

� � ¼ 0:9. Velocity cor-
relations were taken to decrease exponentially with separation according to tij ¼ s2

u exp (�(xi � xj)
2=2s2

c ) where sc is the correlation length scale and so are
scale finite as observed in jackdaw flocks during anti-predator mobbing events [10].
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For the sake of clarity, we report on the results of simulations
using one-dimensional models, (equation (2.6)), reporting on
more complicated higher dimensional models in the elec-
tronic supplementary material. Moreover, because we are
making qualitative rather than quantitative comparisons
with observations all model parameter values are set to
unity unless stated otherwise.
3. Flocking birds are trapped in potential wells
The stochastic modelling rests on the assumption that, like
insects within a swarm, birds within a flock behave on aver-
age as if they are trapped in an elastic potential well. That is,
each bird effectively behaves as if it is bound to the flock by a
force that on average increases linearly as the distance from
the flock centre increases. Here, we provide empirical evi-
dence for this key predicted characteristic of flocking birds
which until now has escaped attention. We analysed pre-
viously collected datasets of flocking jackdaws (Corvus
monedula) in two distinct ecological contexts: transit flights
from daytime foraging sites to night-time roosts and mobbing
of a model terrestrial predator. In both cases, we used
ground-based camera arrays to record the three-dimensional,
time-resolved flight trajectories of each individual bird in the
flocks. Details of our tracking methods can be found in Ling
et al. [39]. The transit flock datasets are described in Ling et al.
[8] and the mobbing flock datasets in Ling et al. [10].

For both transit and mobbing flocks, we computed mean
accelerations as a function of distance from the instantaneous
centre of mass of the flock (for transit flocks) and from the
time-averaged centre of mass (for mobbing flocks); we note
that computing a time-averaged centre of mass for transit
flocks is not possible since they systematically move in a
directed fashion. In accordance with theoretical expectations,
we find that to good approximation mean accelerations con-
ditioned on position increase linearly with the distance from
the centre of the flock, i.e. the birds behave on average as if
they are trapped in a potential well of their own making
(figure 3). Even though the interactions are different in transit
and mobbing flocks [10], both types of flocks display this
emergent potential well. We also find that this potential
well is largely independent of the flock size. We thereby
conjecture that emergent potential wells are a signature fea-
ture of collective—a conjecture that is supported by their
identification in insect swarms [12,15,40].
4. Comparisons with published observations
4.1. Reshuffling of individuals
The network of interactions within a flock changes over time.
Two birds that become strongly correlated because they are
nearest neighbours may later become distant neighbours.
This dynamic may reinforce correlations between individuals,
strongly enhancing global ordering [41]. Group membership
may lower an individual’s risk of predation. But not all
positions within a flock are equivalent, as birds on the bound-
aries of the flock may be more at-risk [42]. If this cost–benefit
trade-off were unfavourable for too many birds, then the flock
would break up. Flock stability is therefore contingent on
network dynamics that allow for the systematic redistribution
of risk among individuals [43]. Cavagna et al. [6] reported that
at intermediate times birds move faster than Brownian motion
with respect to both the centre of mass, and with respect to
each other. Reshuffling with these characteristics is predicted
in the stochastic models. The stochastic model (equation
(2.6)) necessarily predicts that individual movements with
respect to the centre of mass and with respect to each other
are ballistic at short times (less than the velocity autocorrela-
tion timescale) and diffusive at long time (albeit with
vanishing diffusivity because the flocks are localized around
their centres of mass) [34].
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Figure 3. Empirical evidence for central forces in jackdaw flocks. Mean acceleration components are computed as a function of distance from the flock centre of mass
for (a,b) transit flocks and (c,d ) mobbing flocks (see text for the distinction). For transit flocks, the centre of mass is computed instantaneously at each time step; for
mobbing flocks, it is averaged over time. The x direction is taken to be the instantaneous travel direction of the flock, and the y direction is the transverse direction,
orthogonal to both x and the gravity direction. Each colour shows data for a different flocking event. The three transit flocks analysed contained 127, 245 and 239
individuals, and the seven mobbing flocks contained 4, 7, 8, 8, 14, 17 and 26 individuals. In all cases, the conditional mean accelerations are linear in the distance to
the flock centre with a negative slope, indicating a harmonic potential field. The root-mean-square error of linear fits to the data between −20 m and 20 m is
0.11 m s−2 for (a) (averaged over all three curves) and 0.15 m s−2 for (b). Similar fits to the data between −10 m and 10 m give average root-mean-square errors
of 0.46 m s−2 for (c) and 0.58 m s−2 for (d ).
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4.2. Transport of information in turning flocks
Attanasi et al. [29] (see also Procaccini et al. [44]) identified
nearly lossless propagation through the flock of turns
made by individual starlings; a phenomenon that was mod-
elled by [45] and by Cristiani et al. [46]. Nearly lossless
propagation is also evident in the global turning behaviours
of our simulated flocks. Following the methods of analysis
of [29], we examine how turning (as exemplified in
figure 4a) propagates through a simulated flock. To do
this, we first rank all the birds in flocks according to their
turning order. Each bird, i, is then labelled according to
its rank, ri, and by, the time ti, at which it began turning.
Plots of ri as a function of ti reveal that, as with starlings
[29], turning of the simulated flock starts with very few
birds (figure 4b). To understand how turns propagate
through the flock, Attanasi et al. [29] calculated the radius
of the sphere containing all birds that had turned as a func-
tion of time. As with starlings [29] and jackdaws [9], this
radius increases linearly with time at early times
(figure 4c) and turns propagate across the flock with negli-
gible attenuation thereby keeping group decoherence to a
minimum (figure 4a). In accordance with observations [9],
the speed of propagation, cs, increases with flock size for
small flocks, but saturates for larger groups (figure 4d ).

4.3. Transition from disordered aggregations to order
motion as the group density increases

Ling et al. [10] reported that jackdaws interact with a fixed
number of neighbours (topological interactions) when travel-
ling to roosts but coordinate with neighbours based on
spatial distance (metric interactions) during anti-predator
‘mobbing’ events. Consequently, mobbing flocks exhibit a
transition from disordered aggregations to ordered motion
as the group density increases. At low density, flocks
resemble disordered swarms (as predicted because the sto-
chastic model reduces to Okubo’s [12] stochastic model for
insect swarms). At moderate density, flocks show some
degree of coherence, and at high density, all the jackdaws
move and turn as a coherent unit [10]. Ling et al. [10] quanti-
fied coherence with the order parameter f ¼ ui=juijh ij j where
hi denotes an average over all birds. The observed relation-
ship between group density and group order during this
transition agrees well with the stochastic model (figure 5).
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moving with the same velocity (1,0). Speeds were estimated by linear regression of the radius on time tj, for 0 < tj< 0.3. Velocity correlations were taken to
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u exp (�(xi � xj)
2=2s2

c ) where sc is the correlation length scale and so are scale finite as observed
in jackdaw flocks during anti-predator mobbing events [10].
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This relationship is also predicted by the self-propelled par-
ticle model of Ling et al. [10] which like the stochastic
model, equation (2.6), incorporates a centrally attractive
‘gravitational-like’ force that acts on every individual. As
expected, and observed, order in transit flocks is predicted
to be independent of density (figure 5).
5. High-density outer borders and
distinguishable subgroups

Flocks of starlings tend to have high-density outer borders and
flocks of jackdaws in transit can consist of several distinguish-
able subgroups separated along the movement direction
[11,37]. These phenomena may be related and could be incor-
porated into the modelling framework if individuals are
attracted to the centres of local clusters rather than to the
global centre of mass—as might be expected in self-gravitating
systems. Here, this was done by continually partitioning flocks
into subgroups using k-means clustering. Simulated flocks
typically fragment into spatially distinct subgroups, i.e. into
flocks with high-density outer borders (figure 6). Previous sto-
chastic models have either neglected to account for the high-
density borders [41] or have effectively used the observed
form as a model input [47]. Although accidental, the high-den-
sity borders may be biologically significant, creating a ‘wall
effect’ that confuses predators [37]. To date, no other putative
mechanism for producing high-density borders have been
identified, although Cavagna et al. [6] did suggest that flocks
may self-organize out of the selfish tendency of individuals
not to stay at the border, a situation reminiscent of Hamilton’s
[48] ‘selfish herd’ scenario (but see [49]).
6. Discussion
Bird flocks and insect swarms are two seemingly starkly
different forms of collective behaviour that serve to highlight
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Figure 5. Predicted relationship between group density and group order. (a) In accordance with observations, polarization in mobbing flocks with metric correlations
(closed blue circle), ϕ, increases monotonically with density, ρ, following a power law ϕ∼ ρ0.37 (solid line) before saturating [10]. For flocks with topological
(scale-free) interactions, order is observed and predicted to be independent of density (closed green circle) [10]. Predictions (closed black circle) for mobbing
flocks were obtained using the stochastic model, equation (2.6), with �x ¼ 0, xixj

� � ¼ 0, N = 10 and with sx ranging between 1/8 and 3 [a.u.]. Velocity cor-
relations were taken to decrease exponentially with separation according to tij ¼ s2

u exp (�(xi � xj)
2=2s2

c ) where sc is the correlation length scale and so are
scale finite as observed in jackdaw flocks during anti-predator mobbing events [10]. All other model parameters were set to unity [a.u.]. Predictions for the scale-
free flocks were obtained for tij ¼ s2

u when i = j and tij ¼ 0:95s2
u for i = j. (b) Predicted instantaneous polarizations for high (sx ¼ 1=8) (red line) and

low(sx ¼ 1) (blue line) density flocks.
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the difficulties faced when attempting to define collective
movements in a way that can be operationalized across sys-
tems. Here, we argued that Okubo’s [12] model of insect
swarms encapsulates the cohesiveness mechanism at play
in bird flocks. We showed for the first time that flocking
birds do indeed behave on average as if they are trapped in
an elastic potential well, just as predicted (figure 3). We there-
fore suggest that emergent potential wells are a signature
feature of collective movements and a plausible way to dis-
tinguish a group that is not collective from one that is, in
that the members of a collective group feel an attraction to
each other. These potential wells bind flocks together and
are significant because cohesion rather than coherent
motion is the most basic property of collective movements.
We then showed how the distinctive features of bird flocks,
intrinsic velocity correlations (global ordering) [5,37,43] and
differentiated social relationships [8–11] that are not present
in insect swarms [50] can be incorporated into Okubo’s [12]
model (figure 1). The simplest such model, a minimally struc-
tured (maximum entropy) model, predicts that discrete pairs
of individuals are tied together by spring-like effective forces,
as evidenced in jackdaws, a species that forms lifelong pair-
bonds [8] (figure 2). This model was also found to describe
the salient features of collective turns, principally nearly loss-
less propagation of turning behaviour and linear-in-time
growth of the transfer of information distance [9,29]
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(figure 4). And it predicts correctly how mobbing flocks of
jackdaws transition from disordered aggregations to ordered
motion as the group density increases [10] (figure 5). It was
shown how the modelling approach can be extended to
account for the presence of high-density outer borders and
subgroups [11,37] (figure 6). Previous models [26,41,45–47]
capture some but not all these facets of flocking. Any future
models that account for the observations will have more
structure than our minimally structured model and hence
(explicitly or implicitly) will assume something more about
the flock beyond what is required to match the data.

Variants of Okubo’s [12] model therefore predict correctly
the markedly different properties of bird flocks and insect
swarms. Swarms do, for example, strongly damp perturbations
[20]. Thus, unlike bird flocks, which appear to use collective be-
haviour to promote lossless propagation of information flow
through flocks [29], swarms use it to stabilize themselves
against environmental perturbation. In the modelling, this dis-
tinction can be attributed to the simulated flocks being freely
roaming whereas the swarms are localized. Other differences
between the predicted behaviours of swarms and flocks can
be attributed to the presence/absence of correlations and per-
haps also to dimensionality: swarms are three-dimensional
[15], flocks are one- or two-dimensional [43].

The modelling also predicts that Newton’s third law is
violated when the interactions are metric because the effec-
tive spring constants are velocity dependent. This is not
problematic because Newton’s third law need not be
respected in biological aggregates [4,33]. More generally,
violations of Newton’s third law, in the form of velocity-
dependent effective spring constants, become unavoidable
when the velocity statistics are assumed to be non-Gaussian
rather than Gaussian, as would be the case if a threshold is
put on the maximum possible flight speed [16].

The formulation of stochastic models for two- and three-
dimensional flocks with central attraction and correlations is
challenging and is outlined in the electronic supplementary
material. A more substantial challenge is the formulation of
stochastic models that satisfy the so-called ‘two-to-one’
reduction. The statistics of flocks containing N− 1 birds cal-
culated from stochastic models of flocks containing N− 1,
N, N + 1,… birds are not equivalent [34,51].

Data accessibility. Data for transit flocks of jackdaws can be found in the
supplementary material of [8], and data for mobbing flocks in the
electronic supplementary material of [10].

Authors’ contributions. A.M.R.: conceptualization, formal analysis, meth-
odology, writing—original draft and writing—review and editing;
G.E.M.: data curation; A.T.: data curation; P.Y.: formal analysis;
N.T.O.: formal analysis and writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.

Conflict of interest declaration. The authors declare that they have no com-
peting interests.

Funding. The work at Rothamsted forms part of the Smart Crop Protec-
tion (SCP) strategic programme (BBS/OS/CP/000001) funded
through Biotechnology and Biological Sciences Research Council’s
Industrial Strategy Challenge Fund. The work at Exeter and Stanford
was supported by the Human Frontier Science Program (award no.
RGP0049/2017).
References
1. Couzin ID. 2018 Synchronization: the key to effective
communication in animal collectives. Trends. Cog.
Sci. 22, 844–846. (doi:10.1016/j.tics.2018.08.001)

2. Ouellette NT, Gordon DM. 2021 Goals and
limitations of modeling collective behavior in
biological systems. Front. Phys. 9, 687823. (doi:10.
3389/fphy.2021.687823)

3. Ouellette NT. 2017 Toward a ‘thermodynamics’ of
collective behavior. SIAM News 50.

4. Ouellette NT. 2019 The most active matter of all.
Matter 1, 297–299. (doi:10.1016/j.matt.2019.07.
012)

5. Cavagna A, Cimarelli A, Giardina I, Parisi G,
Santagati R, Stefanini F, Viale M. 2010 Scale-free
correlations in starling flocks. Proc. Natl Acad. Sci.
USA 107, 11 865–11 870. (doi:10.1073/pnas.
1005766107)

6. Cavagna A, Queiros SMD, Giardina I, Stefanini F,
Viale M. 2013 Diffusion of individual birds in
starling flocks. Proc. R. Soc. B 280, 20122484.
(doi:10.1098/rspb.2012.2484)

7. Cavagna A, Giardina I, Grigera TS, Jelic A, Levine D,
Ramaswamy S, Viale M. 2015 Silent flocks:
constraints on signal propagation across biological
groups. Phys. Rev. Lett. 114, 218101. (doi:10.1103/
PhysRevLett.114.218101)

8. Ling H, Mclvor GE, Van Der Vaart K, Vaughan RT,
Thornton A, Ouellette NT. 2019 Costs and benefits
of social relationships in the collective motion of
bird flocks. Nat. Ecol. Evol. 3, 943–948. (doi:10.
1038/s41559-019-0891-5)

9. Ling H, Mclvor GE, Westley J, Van Der Vaart K, Yin J,
Vaughan RT, Thornton A, Ouellette NT. 2019
Collective turns in jackdaw flocks: kinematics and
information transfer. J. R. Soc. Inter. 16, 20190450.
(doi:10.1098/rsif.2019.0450)

10. Ling H, Mclvor GE, Westley J, Van Der Vaart K,
Vaughan RT, Thornton A, Ouellette NT. 2019
Behavioural plasticity and the transition to order in
jackdaw flocks. Nat. Comm. 10, 5174. (doi:10.1038/
s41467-019-13281-4)

11. Ling H, Mclvor GE, Van Der Vaart K, Vaughan RT,
Thornton A, Ouellette NT. 2019 Local interactions
and their group-level consequences in flocking
jackdaw. Proc. R. Soc. B 286, 20190865. (doi:10.
1098/rspb.2019.0865)

12. Okubo A. 1986 Dynamical aspects of animal grouping:
swarms, schools, flocks and herds. Adv. Biophys. 22,
1–94. (doi:10.1016/0065-227X(86)90003-1)

13. Attanasi A et al. 2014 Collective behaviour without
collective order in wild swarms of midges. PLoS Comp.
Biol. 10, e1003697. (doi:10.1371/journal.pcbi.1003697)

14. Sumpter DJ. 2006 The principles of collective animal
behaviour. Phil. Trans. R. Soc. B 361, 5–22. (doi:10.
1098/rstb.2005.1733)

15. Kelley DH, Ouellette NT. 2013 Emergent dynamics of
laboratory insect swarms. Sci. Rep. 3, 1–7. (doi:10.
1038/srep01073)
16. Reynolds AM, Sinhuber M, Ouellette NT. 2017 Are
midge swarms bound together by an effective
velocity-dependent gravity? Euro. Phys. J. E 40, 46.
(doi:10.1140/epje/i2017-11531-7)

17. Reynolds AM. 2018 Langevin dynamics encapsulate
the microscopic and emergent macroscopic
properties of midge swarms. J. R. Soc. Inter. 15,
20170806. (doi:10.1098/rsif.2017.0806)

18. Reynolds AM. 2019 On the origin of the tensile
strength of insect swarms. Phys. Biol. 16, 046002.
(doi:10.1088/1478-3975/ab12b9)

19. Reynolds AM. 2019 On the emergence of
gravitational-like forces in insect swarms. J. R. Soc.
Inter. 16, 20190404. (doi:10.1098/rsif.2019.0404)

20. van der Vaart, Sinhuber M, Reynolds AM, Ouellette
NT. 2019 Mechanical spectroscopy of insect swarms.
Sci. Adv. 5, eaaw9305. (doi:10.1126/sciadv.
aaw9305)

21. van der Vaart, Sinhuber M, Reynolds AM, Ouellette
NT. 2020 Environmental perturbations induce
correlations in midge swarms. J. R. Soc. Inter. 17,
20200018. (doi:10.1098/rsif.2020.0018)

22. Ni R, Puckett JG, Dufresne ER, Ouellette NT. 2015
Intrinsic fluctuations and driven response of insect
swarms. Phys. Rev. Lett. 115, 118104. (doi:10.1103/
PhysRevLett.115.118104)

23. Ni R, Ouellette NT. 2016 On the tensile strength of
insect swarms. Phys. Biol. 13, 045002. (doi:10.1088/
1478-3975/13/4/045002)

http://dx.doi.org/10.1016/j.tics.2018.08.001
http://dx.doi.org/10.3389/fphy.2021.687823
http://dx.doi.org/10.3389/fphy.2021.687823
http://dx.doi.org/10.1016/j.matt.2019.07.012
http://dx.doi.org/10.1016/j.matt.2019.07.012
http://dx.doi.org/10.1073/pnas.1005766107
http://dx.doi.org/10.1073/pnas.1005766107
http://dx.doi.org/10.1098/rspb.2012.2484
http://dx.doi.org/10.1103/PhysRevLett.114.218101
http://dx.doi.org/10.1103/PhysRevLett.114.218101
http://dx.doi.org/10.1038/s41559-019-0891-5
http://dx.doi.org/10.1038/s41559-019-0891-5
http://dx.doi.org/10.1098/rsif.2019.0450
http://dx.doi.org/10.1038/s41467-019-13281-4
http://dx.doi.org/10.1038/s41467-019-13281-4
http://dx.doi.org/10.1098/rspb.2019.0865
http://dx.doi.org/10.1098/rspb.2019.0865
http://dx.doi.org/10.1016/0065-227X(86)90003-1
http://dx.doi.org/10.1371/journal.pcbi.1003697
http://dx.doi.org/10.1098/rstb.2005.1733
http://dx.doi.org/10.1098/rstb.2005.1733
http://dx.doi.org/10.1038/srep01073
http://dx.doi.org/10.1038/srep01073
http://dx.doi.org/10.1140/epje/i2017-11531-7
http://dx.doi.org/10.1098/rsif.2017.0806
http://dx.doi.org/10.1088/1478-3975/ab12b9
http://dx.doi.org/10.1098/rsif.2019.0404
http://dx.doi.org/10.1126/sciadv.aaw9305
http://dx.doi.org/10.1126/sciadv.aaw9305
http://dx.doi.org/10.1098/rsif.2020.0018
http://dx.doi.org/10.1103/PhysRevLett.115.118104
http://dx.doi.org/10.1103/PhysRevLett.115.118104
http://dx.doi.org/10.1088/1478-3975/13/4/045002
http://dx.doi.org/10.1088/1478-3975/13/4/045002


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210745

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 A

pr
il 

20
22

 

24. Sinhuber M, Ouellette NT. 2017 Phase coexistence
in insect swarms. Phys. Rev. Lett. 119, 178003.
(doi:10.1103/PhysRevLett.119.178003)

25. Sinhuber M, Van Der Vaart K, Ouellette NT.
2019 Response of insect swarms to
dynamic illumination perturbations. J. R. Soc.
Inter. 16, 20180739. (doi:10.1098/rsif.
2018.0739)

26. Pearce DJG, Miller AM, Rowlands G, Turner MS.
2014 Role of projection in the control of bird flocks.
Proc. Natl Acad. Sci. USA 111, 10 422–10 426.
(doi:10.1073/pnas.1402202111)

27. Shoval O, Goentoro L, Hart Y, Mayo A, Sontag E,
Alon U. 2010 Fold-change detection and scalar
symmetry of sensory input fields. Proc. Natl Acad.
Sci. USA 107, 15 995–16 000. (doi:10.1073/pnas.
1002352107)

28. Jolles JW, King AJ, Manica A, Thornton A. 2013
Heterogeneous structure in mixed-species corvid
flocks in flight. Anim. Behav. 85, 743–750. (doi:10.
1016/j.anbehav.2013.01.015)

29. Attanasi A et al. 2014 Information transfer and
behavioural inertia in starling flocks. Nat. Phys. 10,
691–696. (doi:10.1038/nphys3035)

30. Thomson DJ. 1987 Criteria for the selection of
stochastic models of particle trajectories in
turbulent flows. J. Fluid Mech. 180, 529–556.
(doi:10.1017/S0022112087001940)

31. Rodean HC. 1996 Stochastic Lagrangian models of
turbulent diffusion. Meteorol. Monographs, 26,
1 –84.

32. Reynolds AM, Ouellette NT. 2016 Swarm dynamics
may give rise to Lévy flights. Sci. Rep. 6, 30515.
(doi:10.1038/srep30515)

33. Barberis L, Peruani F. 2016 Large-scale patterns in a
minimal cognitive flocking model: incidental
leaders, nematic patterns, and aggregates. Phys.
Rev. Lett. 117, 248001. (doi:10.1103/PhysRevLett.
117.248001)

34. Thomson DJ. 1990 A stochastic model for
the motion of particle pairs in isotropic high-
Reynolds-number turbulence, and its application
to the problem of concentration variance.
J. Fluid Mech. 210, 113–153. (doi:10.1017/
S0022112090001239)

35. Viscek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O.
1995 Novel type of phase transition in a system of
self-driven particles. Phys. Rev. Lett. 75, 1226–1229.
(doi:10.1103/PhysRevLett.75.1226)

36. Passino KM. 2013 Modelling and cohesiveness
analysis of midge swarms. Int. J. Swarm Int. Res. 4,
1–22. (doi:10.4018/ijsir.2013100101)

37. Ballerini M et al. 2008 Interaction ruling animal
collective behaviour depends on topological rather
than metric distance: evidence from a field study.
Proc. Natl Acad. Sci. USA 105, 1232–1237. (doi:10.
1073/pnas.0711437105)

38. Sawford BL, Pope SB, Yeung PK. 2013 Gaussian
Lagrangian stochastic models for multi-particle
dispersion. Phys. Fluid 25, 055101. (doi:10.1063/1.
4802037)

39. Ling H, McIvor GE, Nagy G, MohaimenianPour S,
Vaughan RT, Thornton A, Ouellette NT. 2018
Simultaneous measurements of three-dimensional
trajectories and wingbeat frequencies of birds in the
field. J. R. Soc. Inter. 15, 20180653. (doi:10.1098/
rsif.2018.0653)

40. Woodgate JL et al. 2021 Harmonic radar tracking
reveals that honeybee drones navigate between
multiple aerial leks. Iscience 24, 102499. (doi:10.
1016/j.isci.2021.102499)

41. Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E,
Viale M, Walczak AM. 2012 Statistical mechanics for
natural flocks of birds. Proc. Natl Acad. Sci. USA 109,
4786–4791. (doi:10.1073/pnas.1118633109)

42. Lambert PJ, Herbert-Read JE, Ioannou CC. 2021 The
measure of spatial position within groups that best
predicts predation risk depends on group
movement. R. Soc. Proc. B 288, 20211286. (doi:10.
1098/rspb.2021.1286)

43. Ballerini M et al. 2008 Empirical investigation of
starling flocks: a benchmark study in collective
animal behaviour. Anim. Behav. 76, 201–215.
(doi:10.1016/j.anbehav.2008.02.004)

44. Procaccini A et al. 2011 Propagating waves in
starling, Sturnus vulgaris, flocks under predation.
Anim. Behav. 82, 759–765. (doi:10.1016/j.anbehav.
2011.07.006)

45. Cavagna A et al. 2015 Flocking and turning: a new
model for self-organized collective motion. J. Stat.
Phys. 158, 601–627. (doi:10.1007/s10955-014-
1119-3)

46. Cristiani E, Menci M, Papi M, Brafman L. 2021 An
all-leader agent-based model for turning and
flocking birds. J. Math. Biol. 83, 1–22. (doi:10.1007/
s00285-021-01675-2)

47. Lewis JM, Turner MS. 2017 Density distributions and
depth in flocks. Phys. D 50, 494003. (doi:10.1088/
1361-6463/aa942f )

48. Hamilton WD. 1971 Geometry for the selfish herd.
J. Theor. Biol. 31, 295–311. (doi:10.1016/0022-
5193(71)90189-5)

49. Sankey DW, Storms RF, Musters RJ, Russell TW,
Hemelrijk CK, Portugal SJ. 2021 Absence of ‘selfish
herd’ dynamics in bird flocks under threat. Curr.
Biol. 31, 3192–3198. (doi:10.1016/j.cub.2021.05.
009)

50. Ni R, Ouellette NT. 2015 Velocity correlations in
laboratory insect swarms. Eur. Phys. J. Spec. Top.
224, 3271–3277. (doi:10.1140/epjst/e2015-50077-
5)

51. Borgas MS, Sawford BL. 1994 A family of stochastic
models for two-particle dispersion in isotropic
homogeneous stationary turbulence. J. Fluid Mech.
279, 69–99. (doi:10.1017/S0022112094003824)

52. Gorbonos D, Ianconescu R, Puckett JG, Ni R,
Ouellette NT, Gov NS. 2016 Long-range acoustic
interactions in insect swarms: an adaptive gravity
model. New J. Phys. 18, 073042. (doi:10.1088/
1367-2630/18/7/073042)

53. Gorbonos D, Gov NS. 2017 Stable swarming using
adaptive long-range interactions. Phys. Rev. E 95,
042405. (doi:10.1103/PhysRevE.95.042405)

54. Puckett JG, Kelley DH, Ouellette NT. 2014 Searching
for effective forces in laboratory insect swarms. Sci.
Rep. 4, 4766. (doi:10.1038/srep04766)

55. Reynolds AM. 2018 Fluctuating environments drive
insect swarms into a new state that is robust to
perturbations. Europhys. Lett. 124, 38001. (doi:10.
1209/0295-5075/124/38001)

56. Sinhuber M, Van Der Vaart K, Feng Y, Reynolds AM,
Ouellette NT. 2021 An equation of state for insect
swarms. Sci. Rep. 11, 3773. (doi:10.1038/s41598-
021-83303-z)

57. Storms RF, Carere C, Zoratto F, Hemelrijk CK. 2019
Complex patterns of collective escape in starling
flocks under predation. Behav. Ecol. Sociobiol. 73.
(doi:10.1007/s00265-018-2609-0)

58. Usherwood JR. 2011 Flying in a flock comes at a
cost in pigeons. Nature 474, 494–497. (doi:10.
1038/nature10164)

http://dx.doi.org/10.1103/PhysRevLett.119.178003
http://dx.doi.org/10.1098/rsif.2018.0739
http://dx.doi.org/10.1098/rsif.2018.0739
http://dx.doi.org/10.1073/pnas.1402202111
http://dx.doi.org/10.1073/pnas.1002352107
http://dx.doi.org/10.1073/pnas.1002352107
http://dx.doi.org/10.1016/j.anbehav.2013.01.015
http://dx.doi.org/10.1016/j.anbehav.2013.01.015
http://dx.doi.org/10.1038/nphys3035
http://dx.doi.org/10.1017/S0022112087001940
http://dx.doi.org/10.1038/srep30515
http://dx.doi.org/10.1103/PhysRevLett.117.248001
http://dx.doi.org/10.1103/PhysRevLett.117.248001
http://dx.doi.org/10.1017/S0022112090001239
http://dx.doi.org/10.1017/S0022112090001239
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.4018/ijsir.2013100101
http://dx.doi.org/10.1073/pnas.0711437105
http://dx.doi.org/10.1073/pnas.0711437105
http://dx.doi.org/10.1063/1.4802037
http://dx.doi.org/10.1063/1.4802037
http://dx.doi.org/10.1098/rsif.2018.0653
http://dx.doi.org/10.1098/rsif.2018.0653
http://dx.doi.org/10.1016/j.isci.2021.102499
http://dx.doi.org/10.1016/j.isci.2021.102499
http://dx.doi.org/10.1073/pnas.1118633109
http://dx.doi.org/10.1098/rspb.2021.1286
http://dx.doi.org/10.1098/rspb.2021.1286
http://dx.doi.org/10.1016/j.anbehav.2008.02.004
http://dx.doi.org/10.1016/j.anbehav.2011.07.006
http://dx.doi.org/10.1016/j.anbehav.2011.07.006
http://dx.doi.org/10.1007/s10955-014-1119-3
http://dx.doi.org/10.1007/s10955-014-1119-3
http://dx.doi.org/10.1007/s00285-021-01675-2
http://dx.doi.org/10.1007/s00285-021-01675-2
http://dx.doi.org/10.1088/1361-6463/aa942f
http://dx.doi.org/10.1088/1361-6463/aa942f
http://dx.doi.org/10.1016/0022-5193(71)90189-5
http://dx.doi.org/10.1016/0022-5193(71)90189-5
http://dx.doi.org/10.1016/j.cub.2021.05.009
http://dx.doi.org/10.1016/j.cub.2021.05.009
http://dx.doi.org/10.1140/epjst/e2015-50077-5
http://dx.doi.org/10.1140/epjst/e2015-50077-5
http://dx.doi.org/10.1017/S0022112094003824
http://dx.doi.org/10.1088/1367-2630/18/7/073042
http://dx.doi.org/10.1088/1367-2630/18/7/073042
http://dx.doi.org/10.1103/PhysRevE.95.042405
http://dx.doi.org/10.1038/srep04766
http://dx.doi.org/10.1209/0295-5075/124/38001
http://dx.doi.org/10.1209/0295-5075/124/38001
http://dx.doi.org/10.1038/s41598-021-83303-z
http://dx.doi.org/10.1038/s41598-021-83303-z
http://dx.doi.org/10.1007/s00265-018-2609-0
http://dx.doi.org/10.1038/nature10164
http://dx.doi.org/10.1038/nature10164

	Stochastic modelling of bird flocks: accounting for the cohesiveness of collective motion
	Introduction
	Model formulation
	Flocking birds are trapped in potential wells
	Comparisons with published observations
	Reshuffling of individuals
	Transport of information in turning flocks
	Transition from disordered aggregations to order motion as the group density increases

	High-density outer borders and distinguishable subgroups
	Discussion
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	References


